# ICESat-2 Algorithm Theoretical Basis Document for Atmosphere Gridded Products

**Steve Palm** 

**Thomas Northam** 

Version 2.2

**December 5, 2019** 

## **Contents**

| Change Log                                           | . 2 |
|------------------------------------------------------|-----|
| Typographical Conventions                            | . 3 |
| Introduction                                         | . 3 |
| 2 Global and Polar Grids                             | . 4 |
| 3 Product Definitions                                | . 4 |
| 3.1 Global Cloud Fraction                            | . 4 |
| 3.1.1 Global Aerosol Fraction                        | . 5 |
| 3.2 Total Column Optical Depth                       | . 5 |
| 3.3 Polar Cloud Fraction                             | . 6 |
| 3.3.1 High, Middle, Low and Total Cloud Fraction     | . 6 |
| 3.3.2 Transmissive and Opaque Cloud Fraction         | . 6 |
| 3.4 Blowing Snow Frequency                           | . 7 |
| 3.5 Apparent Surface Reflectivity (ASR)              | . 7 |
| 3.6 Ground Detection Frequency                       | . 7 |
| 3.7 Images of Gridded Fields                         | . 8 |
| 3.8 Minimum Number of Observations for Each Grid Box | . 8 |
| 3.9 Observations Grids                               | . 8 |
| 1.0 Smoothing of Images                              | . 8 |
| 5.0 Product Formats                                  | 10  |
| 5.0 Product Production Considerations                | 15  |

# **Change Log**

Note: All changes are in red font.

August 21, 2018: Corrected the logic in section 3.3.1. Changed the units in tables to 2 and 3 to fraction from percent.

February 26, 2019: Corrected mistake in blowing snow description, section 3.4. Changed "If *bsnow\_ht* is greater than or equal to -2" to "If *bsnow\_con* is greater than or equal to -2"

May 2019: in section 3.1 added the check of "layer\_attr" when constructing the global cloud fraction grid.

August 2019: Added section 3.1.1 that defines a new parameter (Global Aerosol Fraction) to be added to ATL16 and ATL17. Added section 3.8 which defines the new control parameters <code>week\_obs\_minimum</code> and <code>month\_obs\_minimum</code>, and replaced old section 4.0 with a new section on smoothing of the images that are made from the data grids. In section 4.0 the new control parameters <code>smooth\_grid</code> and <code>center\_weight</code> are described. Changed old section 4.0 to section 5.0. Added section 6.0.

September 2019: ATBD version 2.1. Added observation grids to both ATL16 and ATL17. Specified that smoothing is to be done only on the data to produce the images. The gridded data fields on the product are not smoothed.

December 5, 2019: ATBD version 2.2a. Modifications to certain entries in Section 5.0 Table 2 and Table 3 content. Clarification notes added to Sections 3.1, 3.1.1, and 3.2. Corrections made to text in Section 3.3.1 for definition of low, middle, and high layer altitude boundaries; similar corrections made to Section 5.0 Tables 2 and 3.

# **Typographical Conventions**

Italics are used to specifically denote parameters identified from the input ATL09 backscatter profile data products or to be contained within the output weekly ATL16 or monthly ATL17 gridded atmosphere data products. For example: the <u>solar elevation</u> parameter is obtained from the ATL09 product, and the <u>Data\_type\_flag</u> is written out to the ATL16 and ATL17 data products.

#### 1 Introduction

The gridded atmosphere products consist of the level 3B products ATL16 and ATL17. ATL16 will be a weekly product and ATL17 will be generated monthly. The same atmospheric information will be on both products. The content of both products will include: global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency. The polar cloud fraction will be broken into 6 separate grids representing high, low, middle, transmissive, opaque and total cloud fraction for each hemisphere.

The HDF product files will contain the gridded fields of the above parameters as 2 dimensional arrays and also images of these fields plotted on a map of the respective region. ATL16 weekly products will be generated on a 2x2 degree grid and ATL17 monthly products on a 1x1 degree grid. Table 1 lists the various atmospheric parameters contained in the L3B products and the type of grid used for each. Also, we propose a control parameter read in from an ancillary file which will control whether both night and day data are included in the generation of the product or only night data. The night only data is determined from the ATL09 parameter *solar\_elevation*. If it is less than 0.0, then it is considered night data. This control parameter will be on the product as parameter *Data\_type\_flag*. A value of 0 means to use both day and night data to generate the products, and 1 will mean to use only night data.

#### Table 1.

| Atmospheric Variable          | Type of Grid     |
|-------------------------------|------------------|
| Global Cloud Fraction         | Global           |
| Global Aerosol Fraction       | Global           |
| Total Column Optical Depth    | Global           |
| Polar Cloud Fraction          | Polar            |
| Blowing Snow Frequency        | Polar            |
| Apparent Surface Reflectivity | Global and Polar |
| Ground Detection Frequency    | Global and Polar |

#### 2 Global and Polar Grids

For the gridded products presented here, we use simple rectangular grids at two resolutions: 1x1 degree grids for the monthly product and 2x2 degree grids for the weekly product. Some atmospheric fields are produced on a global grid while others are produced on a polar grid that covers only the area poleward of 60N or 60S. Global monthly grids (i,j) will be dimensioned at (360,180) and global weekly grids will be dimensioned at (180,90). The latitudes and longitudes of the grids will be on both products (see Tables 2 and 3).

Assuming longitude goes from -180 to 180 and the (i,j) indices start at (0,0), the global grid indices are computed from latitude/longitude coordinates as:

```
i = int(longitude+180.0), j = int(latitude+90.0) for the 1x1 degree grid
```

i = int(longitude/2.0+90.0), j = int(latitude/2.0+45.0) for the 2x2 degree grid

Polar monthly grids will be dimensioned at (360,30) and the polar weekly grids are dimensioned at (180,15). The northern polar grid indices are computed as:

```
i = int(longitude+180.0), j = int(90.0-latitude) for the 1x1 degree grid, where latitude is >= 60.0
```

i = int(longitude/2.0+90.0), j = int(45.0-latitude/2.0) for the 2x2 degree grid, where latitude is >= 60.0

The southern polar grid indices are computed as:

```
i = int(longitude+180.0), j = int(90.0+latitude) for the 1x1 degree grid, where latitude is <= -60.0
```

i = int(longitude/2.0+90.0), j = int(45.0+latitude/2.0) for the 2x2 degree grid, where latitude is <= -60.0

#### 3 Product Definitions

#### 3.1 Global Cloud Fraction

This atmospheric parameter is displayed on a global grid. Define a "cloud counter grid" and an "observation grid". The ATL09 product contains the parameter "cloud\_flag\_atm" which is the number

of layers detected for a given 25 Hz profile. When this parameter is > 0 AND the parameter *layer\_attr* = 1 for any layer (i.e., 1=cloud layer attribute), the cloud counter grid box associated with the current location (i,j) indices (computed as in Section 2 above) is incremented for that grid box. The total observation count grid box is incremented for every 25 Hz profile regardless of the value of the product parameter *cloud\_flag\_atm*. After reading the input ATL09 files for the period in question, the cloud counter grid is divided by the total observation grid to obtain a global grid of cloud fraction. For cases where the number of observations for a grid box is less than *week\_obs\_minimum* (ATL16) or *month\_obs\_minimum* (ATL17), set the cloud fraction to invalid. NOTE that the title of the image made from these data is now "Global Cloud and Aerosol Layer Fraction" and must be changed to "Global Cloud Fraction" after the above changes are made. NOTE that the "cloud counter grid" is incremented only once regardless of the number of cloud layers detected after the first determined cloud layer.

#### 3.1.1 Global Aerosol Fraction

This atmospheric parameter is displayed on a global grid. Define an "aerosol counter grid" and an "observation grid". The ATL09 product contains the parameter "cloud\_flag\_atm" which is the number of layers detected for a given 25 Hz profile. When this parameter is > 0 AND the parameter layer\_attr = 2 for any layer (i.e., 2=aerosol layer attribute), the aerosol counter grid box associated with the current location (i,j) indices (computed as in Section 2 above) is incremented for that grid box. Note that when cloud\_flag\_atm > 1, the layer\_attr flag must be checked for each of the layers. If any one of them is equal to 2, then the aerosol counter is incremented. The total observation count grid box is incremented for every 25 Hz profile regardless of the value of the product parameter cloud\_flag\_atm or layer\_attr. After reading the input ATL09 files for the period in question, the aerosol counter grid is divided by the total observation grid to obtain a global grid of aerosol fraction. For cases where the number of observations for a grid box is less than week\_obs\_minimum (ATL16) or month\_obs\_minimum (ATL17), set the aerosol fraction to invalid. The title of the image made for from these data is "Global Aerosol Fraction". NOTE that the "aerosol counter grid" is incremented only once regardless of the number of aerosol layers detected after the first determined aerosol layer.

# 3.2 Total Column Optical Depth

On the ATL09 product is a parameter called *column\_od\_asr* which is the total column optical depth estimated from the apparent surface reflectance. This parameter is computed over the entire globe, but for this product we only want to grid the data over the ocean. Global grids are established as in Section 3.1 above. If the total column optical depth is not invalid (i.e., it will be invalid when there is no ground return detected), and if we are over a water surface (i.e., if the ATL09 product parameter *column\_od\_asr\_qf* is = 4, then we are over water), then it (i.e., *column\_od\_asr*) is added to the grid box corresponding to the current location (i,j) indices (value computed as in section 2 above), and the corresponding counter grid box is incremented. After all of the ATL09 granules have been read in, the total column optical depth grid is divided by the counter grid (where the counter grid is > 0) to establish the average total column optical depth over the oceans for the period in question. As in Section 3.1, the low-resolution grid (i.e., 2x2 degree) is used for the weekly product and the high-resolution grid (i.e., 1x1 degree) for the monthly product. For cases where the number of observations for a grid box is less than *week\_obs\_minimum* (ATL16) or *month\_obs\_minimum* (ATL17), set the average total column optical depth to invalid. NOTE that the 0 to 1.5 range constraint is applied to the image and not to the parameter gridded array values.

#### 3.3 Polar Cloud Fraction

#### 3.3.1 High, Middle, Low and Total Cloud Fraction

For each observation period (weekly/monthly) eight separate polar grids are established that cover the latitude range 60N to 90N and 60S to 90S. For the polar regions, we want to create four cloud fraction grids for each hemisphere. Grid 1 will contain the fraction of clouds that occur below and up to and including 4 km altitude. Grid 2 will contain the cloud fraction for clouds above 4 km and up to and including 8 km. Grid 3 will contain the cloud fraction for clouds that occur above 8 km. Grid 4 will represent total cloud fraction. So, there are 4 grids for each polar region (4 North and 4 South). The grids are populated in the same way as described in section 3.1, except segregated by altitude of the cloud layer top. NOTE that *layer\_attr* has to be equal to 1 for the layer to be a cloud. The top height of the layers is contained in the ATL09 parameter "*layer\_top*", which is dimensioned at 10 but the elements of *layer\_top* will only be defined up to the number of layers found. The number of layers found is stored in the ATL09 parameter *cloud\_flag\_atm*. Thus, if *cloud\_flag\_atm* is = 0, that would mean that there were no clouds found in this profile. We want to look at *layer\_top*(1) up to *layer\_top(cloud\_flag\_atm*) to obtain the top heights of the various cloud layers.

Assuming  $cloud\_flag\_atm$  is > 0, then for each value of x from 1 to  $cloud\_flag\_atm$ :

If any layer top(x) is  $\leq 4$  km AND layer attr = 1, then increment the counter for Grid 1.

If any  $layer\_top(x)$  is > 4 km and <= 8 km AND  $layer\_attr$  = 1, then increment the counter for Grid 2.

If any  $layer\_top(x)$  is > 8 km AND  $layer\_attr = 1$ , then increment the counter for Grid 3.

If *cloud\_flag\_atm* is > 0 AND *layer\_attr* = 1 for any layer, then increment the counter for Grid 4. Note that each of the 4 counter grids are to be incremented (at most) only once per 25 Hz profile. Meaning if there are two cloud layers between say 4 and 8 km, the counter Grid 2 is incremented only once, not twice.

A separate observation counter grid is established and the appropriate grid box is incremented for every 25 Hz profile regardless of the value of the value of cloud\_flag\_atm. All four grids are then divided by the total observation grid (where it is > 0) to obtain the various cloud fractions (4 cloud fractions for each hemisphere). For cases where the number of observations for a grid box is less than week\_obs\_minimum (ATL16) or month\_obs\_minimum (ATL17), set the cloud fraction to invalid.

#### 3.3.2 Transmissive and Opaque Cloud Fraction

Four polar grids are established, 2 for each hemisphere. As in Section 3.3.1, the grids will cover the latitudes 60N to 90N and 60S to 90S. The ATL09 product contains the parameter "cloud\_flag\_atm" which is the number of cloud layers detected for a given 25 Hz profile. When this parameter is > 0, AND the ATL09 parameter "Surface\_sig" is > 0 AND "layer\_attr" = 1 for any layer, then the current grid box for the transmissive cloud grid is incremented. When the parameter "cloud\_flag\_atm" is > 0 AND the parameter "surface\_sig" is = 0 AND "layer\_attr" = 1, then the current grid box for the opaque cloud grid is incremented. As before, for each observation (25 Hz profile) the current observation grid box is incremented. When the period in question (weekly/monthly) has been analyzed, divide the transmissive and opaque cloud grids by the observation grid (for all observation grid boxes > 0). For

cases where the number of observations for a grid box is less than week\_obs\_minimum (ATL16) or month obs minimum (ATL17), set the cloud fraction to invalid.

# 3.4 Blowing Snow Frequency

On the ATL09 product is the parameter *bsnow\_h* at both high-rate (i.e., 25 Hz) and low-rate (i.e., 1 Hz). To create the blowing snow frequency we will use the low-rate (1 second) blowing snow height. An observation grid and a detection grid are set up to cover the polar regions (poleward of 60 degrees North and South). *bsnow\_h* will only be > 0 (and not invalid) when there is a detected blowing snow layer. Thus, when the latitude is poleward of 60N or 60S and whenever *bsnow\_h* > 0 (and not invalid), increment the grid box of the detection grid corresponding to the current latitude/longitude. If *bsnow\_con* is greater than or equal to -2 (but not invalid), then increment the observation grid box of the current location. After all ATL09 files for the period in question have been processed in this way, the blowing snow frequency grid is obtained by dividing the detection grid by the observation grid for all observation grid boxes where the number of observations is >= *week\_obs\_minimum* (ATL16) or *month\_obs\_minimum* (ATL17), and multiply by 100 to obtain percent. For cases where the number of observations for a grid box is less than *week\_obs\_minimum* (ATL16) or *month\_obs\_minimum* (ATL17), set the blowing snow frequency to invalid. Note that blowing snow frequency is the only parameter with units of percent.

# 3.5 Apparent Surface Reflectivity (ASR)

Apparent Surface Reflectivity (ASR) represents the true surface reflectivity modified by the two-way atmospheric transmission. It will generally be a number between 0 and 1. ASR is related to the ratio of the received energy to the transmitted energy and assumes a Lambertian surface reflectance. North and South Polar grids and a global grid are established (each one at 2x2 degree resolution for the weekly product and one at 1x1 degree resolution for the monthly product). The parameter apparent\_surf\_reflec on ATL09 will have a value of 0.0 unless there was a signal detected from the surface. When the latitude is poleward of 60N or 60S and the parameter apparent\_surf\_reflec is greater than 0.0, it (i.e., apparent\_surf\_reflec) is added to the ASR grid box at the current location and the corresponding observation grid box is incremented. If the ASR is equal to 0.0, do nothing. After the period in question has been processed, the ASR grid is divided by the observation grid to get the average ASR. For cases where the number of observations for a grid box is less than week\_obs\_minimum (ATL16) or month\_obs\_minimum (ATL17), set the ASR to invalid.

## 3.6 Ground Detection Frequency

For ground detection frequency, the ATL09 high-rate parameter *surface\_sig* should be used. This will be 0.0 unless the surface signal was detected. North and South Polar grids and a global grid are set up as in Section 3.3 above, and when *surface\_sig* is > 0.0, the surface signal grid box at the current location is incremented. The corresponding observation grid box is incremented regardless of the value of *surface\_sig*. After the period in question has been processed, the ground detection frequency is calculated by dividing the surface signal grid by the observation grid for non-zero values of the observation grid. For cases where the number of observations for a grid box is less than

week\_obs\_minimum (ATL16) or month\_obs\_minimum (ATL17), set the ground detection frequency to invalid.

# 3.7 Images of Gridded Fields

Included on both products will be images of selected atmospheric variables. A map will be drawn on top of the image showing continental and country boundaries. Polar stereographic projection is used for the polar plots and equirectangular projection for the global images. The images can be either jpeg or png format. See the bottom of Tables 2 and 3 for a list of images to be included on the product. NOTE that the list of images contained in Tables 2 and 3 is not meant to be definitive. It is acceptable if images of other data fields are included.

#### 3.8 Minimum Number of Observations for Each Grid Box

In the computation of the various data fields, the data are divided by the number of observations in each grid box. For this ATBD version, we introduce two new control parameters called week\_obs\_minimum and month\_obs\_minimum. If the number of observations for a given grid box is less than week\_obs\_minimum for ATL16, then the value of that grid box is set to invalid. It would be as if there were no observations at all for that grid box. If the number of observations is less than month\_obs\_minimum for ATL17, then the value of that grid box is set to invalid. The nominal values for these parameters are: week\_obs\_minimum = 2 and month\_obs\_minimum = 4.

#### 3.9 Observations Grids

For version 2.1 of this ATBD we add to the products the following 5 observation grids:

North Polar Blowing Snow Frequency – new parameter NPolar\_bsnow\_obs\_grid South Polar Blowing Snow Frequency – new parameter SPolar\_bsnow\_obs\_grid Global ASR – new parameter ASR\_obs\_grid Global Total Column Optical Depth - TCOD\_obs\_grid Global - Global\_cloud\_aerosol\_obs\_grid

# 4.0 Smoothing of Images

For version 2.0 of this ATBD, we introduce two control parameters called *smooth\_grid* and *center\_weight*. If *smooth\_grid* is equal to 1, then it means to apply the smoothing algorithm below to only the weekly product (ATL16) images. If *smooth\_grid* = 2, then it means to apply the smoothing algorithm to only the monthly product (ATL17) images. If *smooth\_grid* = 3, then the smoothing algorithm will be applied to both ATL16 and ATL17 images. When it is equal to zero, no smoothing will be applied to either product. NOTE that the smoothing algorithm is to be applied only to the data to produce the images and not to the gridded data fields that are written to the products. The nominal value of *smooth\_grid* is 1. *center\_weight* is a real value from 0.0 to 1.0 with a nominal value of 0.6. The below algorithm shall be used in the smoothing of the gridded data fields.

Smoothing shall be applied in the following manner. Let imax be the number of longitude points in a given grid and jmax the number of latitude points. Let the addressing indices go from 1 to imax (i.e., not

0 to imax-1) and let Grid represent a gridded data parameter. The grid may contain invalid or missing data.

```
smooth_grid(*,*) = invalid
for j=2,jmax-1 do begin
 for i=2,imax-1 do begin
  cnt = 0.0
  sum = 0.0
  for ii=i-1,i+1 do begin
   for jj=j-1,j+1 do begin
    if (jj ne j or ii ne i) then begin
      if (grid(ii,jj) ne invalid) then begin
        cnt++
        sum = sum + Grid(ii,jj)
      endif
    endif
   endfor
  endfor
  avg = 0.0
  if (cnt gt 0.0) then avg = sum / cnt
  pix = 0.0
  weight = 0.0
  if (grid(i,j) ne invalid) then begin
   weight = center weight
   pix = Grid(i,j)*weight
  endif
  spix = avg * (1.0 - weight) + pix
  if (spix ne 0.0) then smooth_grid(i,j) = spix
 endfor
endfor
for i=1,imax do begin
 if (Grid(i,1) \text{ ne invalid and } Grid(i,2) \text{ ne invalid}) then smooth\_grid(i,1) = (Grid(i,1) + Grid(i,2)) / 2.0
 if (Grid(i,jmax-1) ne invalid and Grid(i,jmax) ne invalid) then smooth_grid(i,jmax) = (Grid(i,jmax-1) +
   Grid(i,jmax)) / 2.0
endfor
for j=1,jmax do begin
 if (Grid(1,j)) ne invalid and Grid(2,j) ne invalid) then smooth\_grid(1,j) = (Grid(1,j) + Grid(2,j)) / 2.0
 if (Grid(imax,j) ne invalid and Grid(imax-1,j) ne invalid) then smooth_grid(imax,j) = (Grid(Imax-1,j) +
  Grid(Imax,j)) / 2.0
endfor
```

## **5.0 Product Formats**

As mention in section 1, ATL16 and ATL17 contain the same gridded atmospheric variables. The only difference between the products is the resolution of the grids and the frequency that they will be produced. ATL16 will be produced weekly and contain the gridded variables on a 2x2 degree grid. ATL17 will be produced monthly and will contain 1x1 degree gridded variables. Tables 2 and 3 list the products for ATL16 and ATL17, respectively.

**Table 2**. ATL16 Product List – frequency 1 per week

| Parameter                     | Type/Dimension   | Units   | Description                       |
|-------------------------------|------------------|---------|-----------------------------------|
| Start_time                    | double precision | seconds | start time/date of data used to   |
|                               |                  | since   | make product                      |
|                               |                  | 2018-   |                                   |
|                               |                  | 01-01   |                                   |
| End_time                      | double precision | seconds | end time/date of data used to     |
|                               |                  | since   | make product                      |
|                               |                  | 2018-   |                                   |
|                               |                  | 01-01   |                                   |
| Data_type_flag                | integer          | 0,1     | tells whether night only data was |
|                               |                  |         | used to make product. 0=no,       |
|                               |                  |         | 1=yes                             |
| Data_QA_flag                  | integer          |         | TBD                               |
| NPolar_grid_lat               | float (15)       | degrees | latitudes of North Polar grid     |
| SPolar_grid_lat               | float (15)       | degrees | latitudes of South Polar grid     |
| NPolar_grid_lon               | float (180)      | degrees | longitudes of North Polar grid    |
| SPolar_grid_lon               | float(180)       | degrees | longitudes of South Polar grid    |
| Global_grid_lat               | float (90)       | degrees | latitudes of Global grid          |
| Global_grid_lon               | float (180)      | degrees | longitudes of Global grid         |
|                               |                  |         |                                   |
| NPolar_bsnow_obs_grid         | float(180,15)    | NA      | The number of blowing snow        |
|                               |                  |         | observations used in the          |
|                               |                  |         | computation of blowing snow       |
|                               |                  |         | frequency for Arctic              |
| SPolar_bsnow_obs_grid         | float(180,15)    | NA      | The number of blowing snow        |
|                               |                  |         | observations used in the          |
|                               |                  |         | computation of blowing snow       |
|                               |                  |         | frequency for Antarctic           |
| ASR_obs_grid                  | float(180,90)    | NA      | The number of observations used   |
|                               |                  |         | to compute the average Global     |
|                               |                  |         | Apparent Surface Reflectance      |
|                               |                  |         | (ASR)                             |
| TCOD_obs_grid                 | float(180,90)    | NA      | The number of observations used   |
|                               |                  |         | to compute the average Global     |
|                               |                  |         | total column optical depth        |
| Global_cloud_aerosol_obs_grid | float(180,90)    | NA      | The number of observations used   |
|                               |                  |         | to compute the average Global     |
|                               |                  |         | cloud and aerosol fraction        |

| Parameter                                       | Type/Dimension   | Units    | Description                                                          |
|-------------------------------------------------|------------------|----------|----------------------------------------------------------------------|
|                                                 | 7,1-2,           |          | ,                                                                    |
| Global cloud frac                               | float (180,90)   | fraction | Global cloud fraction                                                |
| Global_aerosol_frac                             | float (180,90)   | fraction | Global aerosol fraction                                              |
| Global_column_od                                | float (180,90)   | unitless | Global (over ocean) total column                                     |
|                                                 |                  |          | optical depth                                                        |
|                                                 |                  |          |                                                                      |
| NPolar_lowcloud_frac                            | float (180,15)   | fraction | North Polar low (<= 4 km) cloud                                      |
|                                                 |                  |          | fraction                                                             |
| SPolar_lowcloud_frac                            | float (180,15)   | fraction | South Polar low (<= 4 km) cloud                                      |
|                                                 |                  |          | fraction                                                             |
| NPolar_midcloud_frac                            | float (180,15)   | fraction | North Polar mid (> 4 km and                                          |
|                                                 |                  |          | <= 8 km) cloud fraction                                              |
| SPolar_midcloud_frac                            | float (180,15)   | fraction | South Polar mid (> 4 km and                                          |
|                                                 |                  |          | <= 8 km) cloud fraction                                              |
| NPolar_highcloud_frac                           | float (180,15)   | fraction | North Polar high (> 8 km) cloud                                      |
|                                                 |                  |          | fraction                                                             |
| SPolar_highcloud_frac                           | float (180,15)   | fraction | South Polar high (> 8 km) cloud                                      |
|                                                 |                  |          | fraction                                                             |
| NPolar_totalcloud_frac                          | float (180,15)   | fraction | North Polar total cloud fraction                                     |
| SPolar_totalcloud_frac                          | float (180,15)   | fraction | South Polar total cloud fraction                                     |
| 22                                              | (1 . // 20 . 45) | <b>c</b> |                                                                      |
| NPolar_transcloud_frac                          | float (180,15)   | fraction | North Polar transmissive cloud                                       |
| CDalan tuanaslavid fua                          | flast (400.45)   | f:       | fraction                                                             |
| SPolar_transcloud_frac                          | float (180,15)   | fraction | South Polar transmissive cloud                                       |
| NPolar opaquedoud frac                          | float (180,15)   | fraction | fraction  North Polar enague cloud fraction                          |
| NPolar_opaquecloud_frac SPolar_opaquecloud_frac | float (180,15)   | fraction | North Polar opaque cloud fraction  South Polar opaque cloud fraction |
| SPOIAI_OPAQUECIOUU_ITAC                         | 110at (160,13)   | Haction  | South Folai opaque cloud fraction                                    |
| NPolar_blowing_snow_freq                        | float (180,15)   | percent  | Blowing snow frequency for the                                       |
| I'vi oldi_blowing_show_heq                      | 11000 (100,15)   | percent  | northern hemisphere polar region                                     |
| SPolar_blowing_snow_freq                        | float (180,15)   | percent  | Blowing snow frequency for the                                       |
|                                                 | (200,20)         | p 6. 66  | southern hemisphere polar region                                     |
|                                                 |                  |          |                                                                      |
| NPolar_ASR                                      | float (180,15)   | 0 - 1    | North Polar Apparent Surface                                         |
| _                                               |                  |          | Reflectance                                                          |
| SPolar_ASR                                      | float (180,15)   | 0 - 1    | South Polar Apparent Surface                                         |
| _                                               |                  |          | Reflectance                                                          |
| Global_ASR                                      | float (180,90)   | 0 - 1    | Global Apparent Surface                                              |
|                                                 |                  |          | Reflectance                                                          |
|                                                 |                  |          |                                                                      |
| NPolar_grnd_detect                              | float (180,15)   | fraction | North Polar ground detection                                         |
|                                                 |                  |          | frequency                                                            |
| SPolar_grnd_detect                              | float (180,15)   | fraction | South Polar ground detection                                         |
|                                                 |                  |          | frequency                                                            |
| Global_grnd_detect                              | float (180,90)   | fraction | Global ground detection                                              |
|                                                 |                  |          | frequency                                                            |

| Parameter                            | Type/Dimension | Units    | Description                      |
|--------------------------------------|----------------|----------|----------------------------------|
|                                      |                |          |                                  |
| NPolar_totalcloud_frac.png           | image          | fraction | North Polar Total Cloud Fraction |
| SPolar_totalcloud_frac.png           | image          | fraction | South Polar Total Cloud Fraction |
| Global_cloud_frac.png                | image          | fraction | Global Cloud Fraction            |
| Global_column_od.png                 | image          | 0 - 1.5  | Global Total Column Optical      |
|                                      |                |          | Depth (0-1.5)                    |
| NPolar_grnd_detect.png               | image          | fraction | North Polar Ground Detection     |
|                                      |                |          | Frequency (fraction)             |
| SPolar_grnd_detect.png               | image          | fraction | South Polar Ground Detection     |
|                                      |                |          | Frequency (fraction)             |
| NPolar_blowing_snow_freq.png         | image          | percent  | North Polar Blowing Snow         |
|                                      |                |          | Frequency (percent)              |
| SPolar_blowing_snow_freq.png         | image          | percent  | South Polar Blowing Snow         |
|                                      |                |          | Frequency (percent)              |
| NPolar_ASR.png                       | image          | 0 - 1    | North Polar Apparent Surface     |
|                                      |                |          | Reflectance (0-1)                |
| SPolar_ASR.png                       | image          | 0 - 1    | South Polar Apparent Surface     |
|                                      |                |          | Reflectance (0-1)                |
| Global_ASR.png                       | image          | 0 - 1    | Global Apparent Surface          |
|                                      |                |          | Reflectance (0-1)                |
| Global_aerosol_frac.png              | image          | fraction | Global Aerosol Fraction          |
| NPolar_lowcloud_frac.png             | image          | fraction | North Polar Low Cloud Fraction   |
|                                      |                |          | (<= 4km)                         |
| SPolar_lowcloud_frac.png             | image          | fraction | South Polar Low Cloud Fraction   |
|                                      |                |          | (<= 4km)                         |
| NPolar_midcloud_frac.png             | image          | fraction | North Polar Mid Cloud Fraction   |
|                                      |                |          | (> 4km and <= 8km)               |
| SPolar_midcloud_frac.png             | image          | fraction | South Polar Mid Cloud Fraction   |
|                                      |                |          | (> 4km and <= 8km)               |
| NPolar_highcloud_frac.png            | image          | fraction | North Polar High Cloud Fraction  |
|                                      |                |          | (> 8km)                          |
| SPolar_highcloud_frac.png            | image          | fraction | South Polar High Cloud Fraction  |
|                                      |                |          | (> 8km)                          |
| NPolar_transcloud_frac.png           | image          | fraction | North Polar Transmissive Cloud   |
|                                      |                |          | Fraction                         |
| SPolar_transcloud_frac.png           | image          | fraction | South Polar Transmissive Cloud   |
|                                      |                |          | Fraction                         |
| NPolar_opaquecloud_frac.png          | image          | fraction | North Polar Opaque Cloud         |
|                                      |                |          | Fraction                         |
| SPolar_opaquecloud_frac.png          | image          | fraction | South Polar Opaque Cloud         |
|                                      |                |          | Fraction                         |
| Global_grnd_detect.png               | image          | fraction | Global Ground Detection          |
| NOTE: for the images the Description |                |          | Frequency (fraction)             |

NOTE: for the images the Description field contains the label for the projection graphic.

 Table 3. ATL17 Product List – frequency 1 per month

| Parameter                     | Type/Dimension   | Units    | Description                       |
|-------------------------------|------------------|----------|-----------------------------------|
| Start_time                    | double precision | seconds  | start time/date of data used to   |
|                               |                  | since    | make product                      |
|                               |                  | 2018-    |                                   |
|                               |                  | 01-01    |                                   |
| End_time                      | double precision | seconds  | end time/date of data used to     |
|                               |                  | since    | make product                      |
|                               |                  | 2018-    |                                   |
|                               |                  | 01-01    |                                   |
| Data_type_flag                | integer          | 0,1      | tells whether night only data was |
|                               |                  |          | used to make product. 0=no,       |
|                               |                  |          | 1=yes                             |
| Data_QA_flag                  | integer          |          | TBD                               |
| NPolar_grid_lat               | float (30)       | degrees  | latitudes of North Polar grid     |
| SPolar_grid_lat               | float (30)       | degrees  | latitudes of South Polar grid     |
| NPolar_grid_lon               | float (360)      | degrees  | longitudes of North Polar grid    |
| SPolar_grid_lon               | float(360)       | degrees  | longitudes of South Polar grid    |
| Global_grid_lat               | float (180)      | degrees  | latitudes of Global grid          |
| Global_grid_lon               | float (360)      | degrees  | longitudes of Global grid         |
|                               |                  |          |                                   |
| NPolar_bsnow_obs_grid         | float(360,30)    | NA       | The number of blowing snow        |
|                               |                  |          | observations used in the          |
|                               |                  |          | computation of blowing snow       |
|                               |                  |          | frequency for Arctic              |
| SPolar_bsnow_obs_grid         | float(360,30)    | NA       | The number of blowing snow        |
|                               |                  |          | observations used in the          |
|                               |                  |          | computation of blowing snow       |
|                               |                  |          | frequency for Antarctic           |
| ASR_obs_grid                  | float(360,180)   | NA       | The number of observations used   |
|                               |                  |          | to compute the average Global     |
|                               |                  |          | Apparent Surface Reflectance      |
|                               |                  |          | (ASR)                             |
| TCOD_obs_grid                 | float(360,180)   | NA       | The number of observations used   |
|                               |                  |          | to compute the average Global     |
|                               |                  |          | total column optical depth        |
| Global_cloud_aerosol_obs_grid | Float(360,180)   | NA       | The number of observations used   |
|                               |                  |          | to compute the average Global     |
|                               |                  |          | cloud and aerosol fraction        |
|                               |                  |          |                                   |
| Global_cloud_frac             | float (360,180)  | fraction | Global cloud fraction             |
| Global_aerosol_frac           | float (360,180)  | fraction | Global aerosol fraction           |
| Global_column_od              | float (360,180)  | unitless | Global (over ocean) total column  |
|                               |                  |          | optical depth                     |
|                               |                  |          |                                   |
| NPolar_lowcloud_frac          | float (360,30)   | fraction | North Polar low (<= 4 km) cloud   |
|                               |                  |          | fraction                          |

| Parameter                  | Type/Dimension  | Units    | Description                              |
|----------------------------|-----------------|----------|------------------------------------------|
| SPolar_lowcloud_frac       | float (360,30)  | fraction | South Polar low (<= 4 km) cloud          |
|                            |                 |          | fraction                                 |
| NPolar_midcloud_frac       | float (360,30)  | fraction | North Polar mid (> 4 km and              |
|                            |                 |          | <= 8 km) cloud fraction                  |
| SPolar_midcloud_frac       | float (360,30)  | fraction | South Polar mid (> 4 km and              |
|                            |                 |          | <= 8 km) cloud fraction                  |
| NPolar_highcloud_frac      | float (360,30)  | fraction | North Polar high (> 8 km) cloud          |
|                            |                 |          | fraction                                 |
| SPolar_highcloud_frac      | float (360,30)  | fraction | South Polar high (> 8 km) cloud          |
|                            |                 |          | fraction                                 |
| NPolar_totalcloud_frac     | float (360,30)  | fraction | North Polar total cloud fraction         |
| SPolar_totalcloud_frac     | float (360,30)  | fraction | South Polar total cloud fraction         |
|                            |                 |          |                                          |
| NPolar_transcloud_frac     | float (360,30)  | fraction | North Polar transmissive cloud           |
|                            |                 |          | fraction                                 |
| SPolar_transcloud_frac     | float (360,30)  | fraction | South Polar transmissive cloud           |
|                            |                 |          | fraction                                 |
| NPolar_opaquecloud_frac    | float (360,30)  | fraction | North Polar opaque cloud fraction        |
| SPolar_opaquecloud_frac    | float (360,30)  | fraction | South Polar opaque cloud fraction        |
|                            |                 |          |                                          |
| NPolar_blowing_snow_freq   | float (360,30)  | percent  | blowing snow frequency for the           |
|                            |                 |          | northern hemisphere polar region         |
| SPolar_blowing_snow_freq   | float (360,30)  | percent  | blowing snow frequency for the           |
|                            |                 |          | southern hemisphere polar region         |
| ND L ACD                   | (1 + (2.50.20)  | 0 1      |                                          |
| NPolar_ASR                 | float (360,30)  | 0 - 1    | North Polar Apparent Surface             |
| CD-L- ACD                  | flast (200, 20) | 0 1      | Reflectance                              |
| SPolar_ASR                 | float (360,30)  | 0 - 1    | South Polar Apparent Surface Reflectance |
| Global ASR                 | float (260 190) | 0 - 1    |                                          |
| Global_ASK                 | float (360,180) | 0-1      | Global Apparent Surface Reflectance      |
|                            |                 |          | Reflectance                              |
| NPolar grnd detect         | float (360,30)  | fraction | North Polar ground detection             |
| W Olai_gilla_detect        | 110at (300,30)  | Haction  | frequency                                |
| SPolar_grnd_detect         | float (360,30)  | fraction | South Polar ground detection             |
| 31 olai_gina_deteet        | 11001 (300,30)  | liaction | frequency                                |
| Global grnd detect         | float (360,180) | fraction | Global ground detection                  |
| Global_gilla_acteet        | 11001 (300,100) | I action | frequency                                |
|                            |                 |          |                                          |
| NPolar_totalcloud_frac.png | image           | fraction | North Polar Total Cloud Fraction         |
| SPolar totalcloud frac.png | image           | fraction | South Polar Total Cloud Fraction         |
| Global_cloud_frac.png      | image           | fraction | Global Cloud Fraction                    |
| Global_aerosol_frac.png    | image           | fraction | Global Aerosol Fraction                  |
| Global_column_od.png       | image           | 0 - 1.5  | Global Total Column Optical              |
|                            | <b>5</b> -      |          | Depth (0-1.5)                            |
|                            | 1               |          | DCP(11 (U 1.3)                           |

| Parameter                    | Type/Dimension | Units    | Description                     |
|------------------------------|----------------|----------|---------------------------------|
| NPolar_grnd_detect.png       | image          | fraction | North Polar Ground Detection    |
|                              |                |          | Frequency (fraction)            |
| SPolar_grnd_detect.png       | image          | fraction | South Polar Ground Detection    |
|                              |                |          | Frequency (fraction)            |
| NPolar_blowing_snow_freq.png | image          | percent  | North Polar Blowing Snow        |
|                              |                |          | Frequency (percent)             |
| SPolar_blowing_snow_freq.png | image          | percent  | South Polar Blowing Snow        |
|                              |                |          | Frequency (percent)             |
| NPolar_ASR.png               | image          | 0 - 1    | North Polar Apparent Surface    |
|                              |                |          | Reflectance (0-1)               |
| SPolar_ASR.png               | image          | 0 - 1    | South Polar Apparent Surface    |
|                              |                |          | Reflectance (0-1)               |
| Global_ASR.png               | image          | 0 - 1    | Global Apparent Surface         |
|                              |                |          | Reflectance (0-1)               |
| NPolar_lowcloud_frac.png     | image          | fraction | North Polar Low Cloud Fraction  |
|                              |                |          | (<= 4km)                        |
| SPolar_lowcloud_frac.png     | image          | fraction | South Polar Low Cloud Fraction  |
|                              |                |          | (<= 4km)                        |
| NPolar_midcloud_frac.png     | image          | fraction | North Polar Mid Cloud Fraction  |
|                              |                |          | (> 4km and <= 8km)              |
| SPolar_midcloud_frac.png     | image          | fraction | South Polar Mid Cloud Fraction  |
|                              |                |          | (> 4km and <= 8km)              |
| NPolar_highcloud_frac.png    | image          | fraction | North Polar High Cloud Fraction |
|                              |                |          | (> 8km)                         |
| SPolar_highcloud_frac.png    | image          | fraction | South Polar High Cloud Fraction |
|                              |                |          | (> 8km)                         |
| NPolar_transcloud_frac.png   | image          | fraction | North Polar Transmissive Cloud  |
|                              |                |          | Fraction                        |
| SPolar_transcloud_frac.png   | image          | fraction | South Polar Transmissive Cloud  |
|                              |                |          | Fraction                        |
| NPolar_opaquecloud_frac.png  | image          | fraction | North Polar Opaque Cloud        |
|                              |                |          | Fraction                        |
| SPolar_opaquecloud_frac.png  | image          | fraction | South Polar Opaque Cloud        |
|                              |                |          | Fraction                        |
| Global_grnd_detect.png       | image          | fraction | Global Ground Detection         |
|                              |                |          | Frequency (fraction)            |

NOTE: for the images the Description field contains the label for the projection graphic.

# **6.0 Product Production Considerations**

List of ATBD Lead suggestions regarding the date/time span for production of atmosphere gridded data products:

• the monthly product will begin on the first day of the month;

- the monthly data product will end on the last day of the month;
- the first weekly data product within the month will begin on the first day of the month, end on the seventh day of the month, and contain seven days;
- the second weekly data product within the month will begin on the eighth day of the month, end on the fourteenth day of the month, and contain seven days;
- the third weekly data product within the month will begin on the fifteenth day of the month, end on the twenty-first day of the month, and contain seven days;
- the fourth weekly data product within the month will begin on the twenty-second day of the month, end on either the twenty-eighth, twenty-ninth, thirtieth, or thirty-first day of the month, and will contain either seven days, eight days, nine days, or ten days, respectively, depending on the calendar month and leap year.

The following tables supply the beginning and ending dates for the control file generation for production of monthly ATL17 and weekly ATL16 gridded atmosphere data products.

# Monthly ATL17 Product File Content Control Information (used to control the collection and specification of ATL09 files to compose the product)

|                      |                |              |         | Possible     |
|----------------------|----------------|--------------|---------|--------------|
|                      |                |              | Number  | Number of    |
| Month                | Beginning Date | Ending Date  | of Days | Files (RGTs) |
| January              | January 01     | January 31   | 31      | 474          |
| February             | February 01    | February 28  | 28      | 428          |
| February (leap year) | February 01    | February 29  | 29      | 443          |
| March                | March 01       | March 31     | 31      | 474          |
| April                | April 01       | April 30     | 30      | 459          |
| May                  | May 01         | May 31       | 31      | 474          |
| June                 | June 01        | June 30      | 30      | 459          |
| July                 | July 01        | July 31      | 31      | 474          |
| August               | August 01      | August 31    | 31      | 474          |
| September            | September 01   | September 30 | 30      | 459          |
| October              | October 01     | October 31   | 31      | 474          |
| November             | November 01    | November 30  | 30      | 459          |
| December             | December 01    | December 31  | 31      | 474          |

Table 4. Monthly ATL17 Data Product ATL09 File Composition by Month

# Weekly ATL16 Product File Content Control Information (used to control the collection and specification of ATL09 files to compose the product)

|         |      |                |             |           | Possible        |
|---------|------|----------------|-------------|-----------|-----------------|
|         |      |                |             | Number of | Number of Files |
| Month   | Week | Beginning Date | Ending Date | Days      | (RGTs)          |
| January | 01   | January 01     | January 07  | 07        | 107             |

|                |      |                |              |           | Possible        |
|----------------|------|----------------|--------------|-----------|-----------------|
|                |      |                |              | Number of | Number of Files |
| Month          | Week | Beginning Date | Ending Date  | Days      | (RGTs)          |
| January        | 02   | January 08     | January 14   | 07        | 107             |
| January        | 03   | January 15     | January 21   | 07        | 107             |
| January        | 04   | January 22     | January 31   | 10        | 153             |
| February       | 01   | February 01    | February 07  | 07        | 107             |
| February       | 02   | February 08    | February 14  | 07        | 107             |
| February       | 03   | February 15    | February 21  | 07        | 107             |
| February       | 04   | February 22    | February 28  | 07        | 107             |
| February (leap | 04   | February 22    | February 29  | 08        | 123             |
| year)          |      |                |              |           |                 |
| March          | 01   | March 01       | March 07     | 07        | 107             |
| March          | 02   | March 08       | March 14     | 07        | 107             |
| March          | 03   | March 15       | March 21     | 07        | 107             |
| March          | 04   | March 22       | March 31     | 10        | 153             |
| April          | 01   | April 01       | April 07     | 07        | 107             |
| April          | 02   | April 08       | April 14     | 07        | 107             |
| April          | 03   | April 15       | April 21     | 07        | 107             |
| April          | 04   | April 22       | April 30     | 09        | 138             |
| May            | 01   | May 01         | May 07       | 07        | 107             |
| May            | 02   | May 08         | May 14       | 07        | 107             |
| May            | 03   | May 15         | May 21       | 07        | 107             |
| May            | 04   | May 22         | May 31       | 10        | 153             |
| June           | 01   | June 01        | June 07      | 07        | 107             |
| June           | 02   | June 08        | June 14      | 07        | 107             |
| June           | 03   | June 15        | June 21      | 07        | 107             |
| June           | 04   | June 22        | June 30      | 09        | 138             |
| July           | 01   | July 01        | July 07      | 07        | 107             |
| July           | 02   | July 08        | July 14      | 07        | 107             |
| July           | 03   | July 15        | July 21      | 07        | 107             |
| July           | 04   | July 22        | July 31      | 10        | 153             |
| August         | 01   | August 01      | August 07    | 07        | 107             |
| August         | 02   | August 08      | August 14    | 07        | 107             |
| August         | 03   | August 15      | August 21    | 07        | 107             |
| August         | 04   | August 22      | August 31    | 10        | 153             |
| September      | 01   | September 01   | September 07 | 07        | 107             |
| September      | 02   | September 08   | September 14 | 07        | 107             |
| September      | 03   | September 15   | September 21 | 07        | 107             |
| September      | 04   | September 22   | September 30 | 09        | 138             |
| October        | 01   | October 01     | October 07   | 07        | 107             |
| October        | 02   | October 08     | October 14   | 07        | 107             |
| October        | 03   | October 15     | October 21   | 07        | 107             |
| October        | 04   | October 22     | October 31   | 10        | 153             |
| November       | 01   | November 01    | November 07  | 07        | 107             |

|          |      |                |             |           | Possible        |
|----------|------|----------------|-------------|-----------|-----------------|
|          |      |                |             | Number of | Number of Files |
| Month    | Week | Beginning Date | Ending Date | Days      | (RGTs)          |
| November | 02   | November 08    | November 14 | 07        | 107             |
| November | 03   | November 15    | November 21 | 07        | 107             |
| November | 04   | November 22    | November 30 | 09        | 138             |
| December | 01   | December 01    | December 07 | 07        | 107             |
| December | 02   | December 08    | December 14 | 07        | 107             |
| December | 03   | December 15    | December 21 | 07        | 107             |
| December | 04   | December 22    | December 31 | 10        | 153             |

Table 5. Weekly ATL16 Data Product ATL09 File Composition by Month and Week